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The conjugate gradient methods (CGMs) have been successfully applied to solve the 
complex matrix equations arising from discretization of boundary integral equations. If the 
underlying integral operator is compact, its eigenvalue clustering property ensures the fast 
convergence of these methods. Such an integral operator is usually compact if the integral 
boundary is globally smooth. In this paper however, we consider the numerical solution of the 
boundary integral equation with a non-compact operator where the non-compactness is due 
to the non-smoothness of a pieceiwe smooth boundary. Two particular algorithms are presen- 
ted and tested for a model problem. We  show that such non-compact integral equations can 
be solved elliciently by the preconditioned conjugate gradient method and that the algorithm 
using the normal equation appears to be particularly efficient. 8 1991 Academic Press, Inc. 
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1. INTRODUCTION 

In this paper  we study the problem of the numerical solution of boundary 
integral equations on  piecewise smooth boundar ies by the precondit ioned conjugate 
gradient methods. As is well known, many boundary value problems of partial 
differential equations may be  advantageously reformulated as boundary integral 
equations over the finite boundary of the doma in of interest once a  fundamental 
solution of the differential equat ion is available. Refer to [ 14, 21, 24, 261. These 
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boundary integral equations are subsequently solved by boundary element 
methods. The numerical theory on solving boundary integral equations, usually of 
the second kind, is quite satisfactory provided that the underlying boundary is 
globally smooth. Refer to [S, 9, 111 and the references therein. 

The discretization of a second kind integral equation by numerical methods 
usually produces a large linear system with a full and complex coefficient matrix. 
Suppose that the size of the system is N. Then the solution by direct methods such 
as Gaussian elimination requires O(N3) floating point operations. Recently iterative 
methods have been developed and successfully implemented for fast solution of the 
linear system, reducing the cost to O(N*) operations. In most of these iterative 
methods, including the multigrid type methods and the conjugate gradient methods, 
the underlying integral operator is assumed to be compact in some Banach space. 
The assumption can be in general justified if the boundary is smooth. Refer to [ 1, 
2, 4, 16, 18, 261. In particular, the simple two-grid methods of Atkinson [4] have 
been found extremely efficient for problems with a smooth boundary (see [ 11). 

For the reformulation of the Helmholtz equation, we can establish the smooth- 
ness and the compactness of all relevant integral operators if the boundary is 
sufficiently smooth. See [23]. These two properties are essential in determining the 
efficiency of numerical methods and developing efficient iterative methods. 

However, when the boundary of interest admits corners and edges (i.e., has 
geometric singularities), the underlying integral operator is non-compact and the 
solution of the integral equation will usually possess similar non-smooth behaviour 
near such singularities. See [6, 12, 241. For the numerical solution of such integral 
equations, [3, lo] have recently studied collocation methods and established a 
convergence analysis. 

But the generalization of iterative methods for solving non-compact integral 
operator equations is not yet complete. Multigrid methods have been devised for 
such equations in the recent works of [17, 27, 283, ensuring fast convergence. 
However, their methods essentially require an inversion of a full matrix of smaller 
size r x r, where r ( < N) is an integer depending on N. Such methods are therefore 
expected to be faster than direct methods. But the efficiency of these methods 
cannot be maintained either theoretically or pracitcally at the level of O(N*) 
operations, the ideal multigrid efficiency (refer to [ 1, 16, IS]). Improvements upon 
existing multigrid methods have been recently made in [S, 131. As far as we are 
aware, the application of the conjugate gradient type methods for such equations 
has not been reported. 

In general conjugate gradient methods (CGMs) as surveyed in [25] can be 
applied to any linear system with complex non-Hermitian coefficient matrix. But 
the overall efficiency is generally at the same level of O(N3) as for direct methods. 
When the linear system is from discretization of the second kind boundary integral 
equation with a compact operator, we have established in [2] that the fast con- 
vergence of conjugate gradient methods has the property of “fixed step” termination 
given a required tolerance. By “fixed step” we mean that the number of iterations 
required to achieve a desirable accuracy is fixed and independent of N-the dimen- 
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sion of the underlying discrete problem. There we use the eigenvalue clustering 
property of compact operators. 

It is not a trivial matter to generalize the results on CGMs to the case of solving 
non-compact integral operator equations. However, since most discrete operators 
approximating the underlying non-compact operator are in general compact, we 
should be able to observe the eigenvalue clustering pattern of a given matrix of the 
linear system and hence the good performance of the CGMs as applied to the linear 
system. Refer to [ 11, Chap. 61 and Section 6 later, for an example. But unlike the 
case with compact operators, such clustering patterns will vary as the size of the 
linear system changes and they do not asymptotically converge to a simple fixed 
pattern. This implies that we may not observe the “fixed step” termination property. 

Nevertheless, we shall show that for solving such non-compact integral operator 
equations, it is always possible to find a good preconditioner which will help to 
cluster the eigenvalues of discrete operators to some “fixed” pattern. With such a 
preconditioner for the linear system, the CGMs can achieve a practical efficiency of 
O(N’) operations. 

In Section 2, we discuss the reformulation of the Helmholtz equation by con- 
sidering it with the Dirichlet boundary condition in an exterior infinite domain with 
a non-smooth boundary. In Section 3, we solve the non-compact integral operator 
equation arising from the reformulation of Section 2 using the collocation method. 
We present in Section 4 two conjugate gradient algorithms for solving the 
subsequent complex matrix equations. In Section 5, we discuss the eigenvalue 
redistributions by preconditioning in order to accelerate the convergence of the 
CGMs. Numerical experiments on the algorithms are carried out in Section 6 and 
conclusions are given in Section 7. 

2. REFORMULATION OF THE HELMHOLTZ EQUATION 

To describe briefly the boundary integral equation reformulations, we consider 
the two-dimensional Helmholtz equation in a domain E exterior to the closed 
boundary S 

(V2 + kZ) 4(P) = 0, P E 6 (1) 

with the boundary conditions 

4(P) =f(p), PE s, 

lim  rli2 {$-i&(p)]=O, 
r-m 

PEE, 
(2) 

where r = 1 pi. The solution d(p) of Eq. ( 1) may be represented by J&O, the hybrid 
layer potential of the single and double layers, where 

(~~)(~)=j~{~-~G,)o(q)d~~. PEE, 
Y 
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where o(p) is an unknown density function, nq is the unit normal directed into E, 
G,(p, q) is the fundamental solution for the Helmholtz equation, and q is a non- 
zero coupling parameter required to ensure the uniqueness of a(p) for any k. By 
imposing the boundary conditions (2), this yields the second kind integral equation 

P, q) - vlG,(p, q) a(q) ds, =f(p), p E x (4) 

where in is the internal angle at point p between the two tangents (note that 
x(p) = 1 at all smooth points). Here for moderately large k, we choose q = ki/2 as 
this choice can be shown to improve the conditioning of Eq. (4) (see [2,22]). The 
fundamental solution in 2D is given by the zero-order Hankel function of the first 
kind 

GAP, q) = i Hb”(kr), r = IP - 41, (5) 

where a jth-order Hankel function of the first kind is defined by 

Hj”(x) = J,(x) + iNi( 

with j an integer or zero, J, and Nj the jth-order Bessel functions of the first kind 
and the second kind, respectively. 

We are especially interested in the case where the boundary S is only piecewise 
smooth. Without essential loss of generality, we now consider the boundary S as 
shown in Fig. 1, having a single corner point at o and comprising of two straight 

FIG. 1. 2D boundary curve S with a corner at point o: (1) B is smooth everywhere; (2) 
B=n/2=90”. 
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lines rr and r2 and a smooth curve B. Here the angle between r, and r2 is 
denoted by c( (refer to [6, 12, 241 for a similar example). Equation (4) can be 
written as 

O(P) i --4 s {qHb”(kr)+kH’,“(kv)Grad(r).n,) o(q)dsq=f(p), 2 I pus/. (6) 

Then with such a specific choice of S = r, LJ B v TZ, we may expand Eq. (6) using 
the expansions of the Hankel functions to separate the most singular integral; refer 
to [ll, Chap. 5; 12; 241. 

Further it can be shown that Eq. (6) may be characterized by the following 
prototype equation 

(Y-x-Z)u=g, O<s<l, (7) 

where Xx: CO[O, l] --f C’[O, l] is non-compact, defined by 

s = 0, 

(Xxll/)(s) = 
O<s<l, 

(8) 

with the kernel K(t) = (sin cc)(t/( 1 + t2 - 2t cos c())/rc, and the operator LZ defined by 
(6pu)(.s) = s: L(s, t) v(t) dt is compact with its kernel L(s, t) obviously less singular 
than the kernel K(s/t)/t of LX?. Refer to [lo; 11, Chap. 51. 

Using the local Mellin transforms, we have shown in [12] that the solution to 
Eq. (7) (or Eq. (6)) near the corner o of the boundary has the asymptotic form 

u(s) = u(0) -t As” + Y(s) (9) 

where s is the arc length measured from the corner and Asa denotes the leading 
singular form in the expansion with b = m in{ n/a, 71/(27r - a) ). Therefore one 
natural space setting for the solution of (7) with the form (9) may be defined by 

with the norm 
c;= {x: IIx(~)--x(0)ll,,p< a> 

where D = d/ds is the 1D differential symbol. 

3. NUMERICAL SOLUTION OF NON-SMOOTH OPERATOR EQUATIONS 

We now discuss the numerical solution of Eq. (7) by collocation methods based 
on piecewise polynomials, following the work of [lo]. This type of methods is 
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related to engineering applications (see [9]). However, other numerical approaches 
such as the Nystriim method may also be considered (refer to [7]). 

To introduce a piecewise polynomial space, let us define a mesh 

zz~:o=~,<~,< ... <‘In=1 (10) 

over the interval [0, 11. For 1 < i 6 n, we set Zi = (rip,, vi], hci, = vi -vi- r, and 
h,=maxl.jGn hcj,. Then denote by STr the space of piecewise polynomials of 
order 1 (i.e., degree 0) on each of the first i subintervals Zi,, i’= 1, . . . . i, and order 
r (i.e., degree r - 1) on each of the last n - i subintervals Ziz, i’ = i+ 1, . . . . n, where 
0 < i < n. Denote the mid-points of subintervals Ii, (i’ = 1, . . . . i) by 

and r distinct points in subintervals Iis (i’ = i + 1, . . . . n) by 

where 
O<&<l? 

are the nodes of some quadrature rule on [0, l] with 
< 5, < 1. Then for any function u E C’[O, 11, we may approximate it by 

an interpolatory piecewise polynomial u, E STr. In detail we write 

h(S) = 
Jf;G) U($l h SEZi,(i’<i),SEIO, l] 
CJ= 1 liy(s) u(sF'j), sEZi.(i’>i),sE [0, 11, (11) 

where for s E [O, 11, 

For convenience, we shall write {s~};“~ for the collection of nodes (~7,~): and 
{s~;‘}~~=i+l, and {ej(s))p for the collection of basis functions (X,(s)}; and 
{li~(S))~=i+l ( a ft er renumbering in sequential order). It is easy to see that N, = 
dim(S~~“) = (n - i)r + i. Therefore the space Six’ can be viewed as the span of N, 
independent basis functions (II/,}. 

Using these nodes {sI};y”, we may define a projection operator Pn: 
C’[O, l] + STr -+ S;,’ by 

(%“)(s)= ? u(sj) $jts)3 SE co, 11, (12) 
j= 1 
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where u,(s) = (Pnu)(s) interpolates U(S) at these nodes, i.e., 

(9z")tsj) = u(sj)3 j= 1, . . . . N,. 

Using operator notation, the collocation approximation U, E S:” to solution u of 
Eq. (7) is defined by 

(~-~nx-9yn~)u”=~ng. (13) 

Further, the product integration approximation u,* E C’[O, l] may be defined by 

(,a - 3T-PH - d;pPn) 24; = g, (14) 

with the relation to U, given by 

ld,=Pn14uf 

and having the equivalent definition 

u,*=g+(X+Li?)u,. 

For an error analysis on u,,, we obtain from Eqs. (7) and (13) 

u-u,=(~-~~(-x+6p))~l(g-~~)u 

and then 

llu--Al d ll(~-%~x--‘/I .Il(~-%)4* (15) 

where the supremum norm is used. While for the error analysis of uz, we have 
similarly from Eqs. (7) and (14) 

and, further, from the identity 

we obtain 

Il~-4ll d(c,+c, ll~~-~~~++$P~~lII~~II~~+~~~~-~~~II~ (16) 

where cis (from now on) are generic constants independent of n and the 
solution 24. 

The mesh 17, in (10) is generally non-uniform, the choice of which depends on 
the smoothness of the solution U. In our case, we define the graded mesh as 

9, YE f 
0 

4, j=O, 1 7 . ..> n, n (17) 

with the integer q 2 1. Here q = 1 defines the uniform mesh. 
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THEOREM 1. Let a mesh II, be as set up in (17). 

(1) If u E Cj and the exponent q > r/p, then there exists an i = i, such that 
u, E S$r satisfies 

(2) If u E Cg , the exponent q > 2r/P and the quadrature points { tj} are chosen 
to be the Gauss-Legendre nodes shifted to [0, 11, then there exists an i = i, such that 
based on the space Syir, u,* satisfies 

llu-u,Tll =O(np2’). 

ProoJ: The proof follows from [lo]; there exists an i = i* such that 
11(~-~x)r’II Gc,. It is then easy to prove the stability result in (15) and (16) 
(i.e., II(Y-Pn(X+P)))llI bc,). Refer to [ll, Chap.51. 1 

To solve Eq. (13), we collocate at the nodes sj, j = 1, . . . . N,, giving a linear system 
of size N,, 

Anu,=g with A,, = I- B,, (18) 

where 

(Bn)q =Jbol CK(si, t) + L(si, t)l tij(t) dt, j= 1, 2, . . . . N,, 

(&I), = %(SA i= 1 , . . . . N,. 

(iZ)i = gtsi)3 

Then the collocation solution is given by u,(s) = Pnlnu=Cy: I (u,,)~ Ii/l(s) and the 
product integration approximation by U,*(S) = g(s) + (X + 2) u,(s). 

Now consider the important problem of accurately evaluating quantities (B,),j by 
numerical integration. Since basis functions $;s are piecewise, we can rewrite (B,)ii 
in the form (assume that the piecewise polynomial space Sri” with i * B 0 is used) 

(B,),i = i j-q1 [K(s,, t) + L(si, t)] dt 
rn=, ‘IIt- 

+ i 
m=i*+l 

Iv:-, CK(si, t) +L(si, [)I $j(t) dt, (19) 

where $j is the Lagrange interpolation basis function; refer to (11). Further, making 
use of the specific form of kernel K, it is possible to evaluate anaytically the 
integrals in (19) involving K; refer to [lo]. For the remaining integrals in (19) 
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involving the smooth kernel L, standard integration rules such as the Gauss- 
Legendre rule may be applied to obtain numerical approximations; refer to [ 11, 
Chap. 11 and the references therein for a general discussion. 

Remark. The inclusion of a parameter i in defining the piecewise polynomial 
space is for the sole purpose of proving the stability theoretically. In practice, 
however, the choice of i = 0 is often acceptable unless numerical solvers detect any 
instability of the problem. In Section 5, we shall use the choice of i> 1 even if the 
problem is stable, as this does not affect the overall accuracy. 

4. CONJUGATE GRADIENT METHODS 

To solve Eq. (18) iteratively, we shall now discuss the application of the 
conjugate gradient methods (CGMs). Let us start with the basic version of the 
CGM. Suppose that a linear system of size N, 

Ax=b, (20) 

possesses a real symmetric positive definite matrix A. Then the CGM for solving 
Eq. (20) is based on the equivalence of solving the linear system and m inimizing the 
quadratic functional 

d(x) = $x’ Ax - xTb. 

That is, the m inimum value of 4 is - ibT A-lb, achieved by setting x = x* = A ‘b. 
See [15, Chap. lo] and the references therein for more discussions. 

The basic CGM algorithm of solving Eq. (20) may be given below, where the 
initial guess x = x(O) = 0. 

ALGORITHM 0. 

(0) 
(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

Set x:=p:=O, c , := 1, r :=b and input TOL; 
Compute c2 := llrli 2, E := A; 
If E/jlbll 2 d TOL, then terminate with solution in x; 
Compute fl := c2/c, and set c1 := c,; 
Modify p := r + fip; 
Compute q := A p; 
Compute a := c,/p’q; 
Modify x :=x + crp; 
Modify r := r - aq; 
Return to step (1). 
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An important property of the CGM is the analogy between CG iterations and a 
polynomial curve fitting, which is usually exploited in deriving error bounds for the 
CGM. See [19]. The classic result for the convergence of the CGM states 

E(x’9Q4 ~ L 1 s-1 2*.qx’O)) J ’ k= lf 22 “.’ C+l 
(21) 

where x@) (k 2 0) denotes the kth iterate, C is the 2-norm condition number of A, 
and E(x) = IIx-x*IIA = (X-X*)= A(x-x*) is the A-norm measure of the error. 
The error bound in (21) is generally quite pessimistic and has been improved in [2] 
in special cases, as stated below. 

THEOREM 2. Let A be a N x N real symmetric positive definite matrix, where 
most of its eigenvalues cluster in region [u, v] with Co = v/u < C and only a few 
eigenvalues lie outside the region. Then applying the CGM to solve Ax = b, we have 

E(x(ko+k)) < 4 [ Jg :1’“. qx’O’), k = 1, 2, . . . . (22) 

where k, is a small positive integer, only depending on the number of eigenvalues of 
A outside [u, v]. 

Results that have been discussed so far in the section, for real symmetric positive 
definite matrices A, are also valid for Hermitian positive definite matrices A, 
provided that the transpose of a vector yT is replaced by a complex conjugate trans- 
pose y* and that the new A-norm for a complex vector y is defined by llyll A = 
y*Ay. But in practice, matrices A such as in Eq. (18) are generally non-Hermitian. 
We now present two treatments of such matrices, leading to the application of the 
CGMs. Suppose that our linear system is again as given in (20), where A is a non- 
Hermitian matrix. 

The first approach, quite well known, is to use the normal equation, i.e., to solve 
instead of Eq. (20), 

A*Ax= A*b (23) 

AA*y=b (24) 

with x = A*y, where A* is the conjugate transpose of A. Both matrices A*A and 
AA* are Hermitian positive definite. So the basic CGM is immediately applicable. 
An algorithm using Eq. (24) for solving Ax = b may be presented as follows, where 
the initial guess x = x(O) = 0. 
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ALGORITHM 1. 

(0) Set x:=p:=O, c i := 1, r := b and input TOL; 
(1) Compute c2 := Ilrll:, E:=&; 
(2) If E/llb112 <TOL, then terminate with solution in x; 
(3) Compute /I :=c,/c, and set c, :=c,; 
(4) Modify p := r + /Ip; 
(5) Compute q := A*p; 
(6) Compute t( := c,/llqll:; 
(7) Modify x :=x + ccq; 
(8) Modify r := r - dq; 
(9) Return to step (1). 

The disadvantage of the algorithm is that the condition number of the original 
linear system is squared since cond(A*A) = cond(AA*) = [cond(A)]‘. In our 
application area, however, the condition number of A and hence that of AA* are 
often not very large. 

The second approach, called the augmented conjugate gradient method, is to 
augment the original linear system in order to form a new system with a Hermitian 
matrix. This is studied in [25]. For a linear system such as (20) with A non- 
Hermitian, the augmented system takes the form 

BT=Z (25) 
with B= [je t], T= [J, Z= [k]. Here B is of order 2Nx 2N, both T and Z are 
of order 2N x 1 and 6 denotes the conjugate of b. Now since B in Eq. (25) is only 
Hermitian, not positive definite, the direct application of the basic CGM may not 
work. In [25], a step of m inimizing residuals is proposed in each step of CG itera- 
tions. Hence we find a least-squares solution. The modified CGM may be presented 
in the following algorithm, where complex vectors p, q, r, T, T are of order 2N x 1, 
only the second half of T  is required and the initial guess T =T(‘) =O. 

ALGORITHM 2. 

(0) Set T  := T := 0, p := r := [k] and input TOL; 
(1) Compute c2 .- *- Ml;, E:=Jc,; 
(2) If E/(2 llbl12) < TOL, then terminate with solution in the second half of T?;; 
(3) Compute q := Bp; 
(4) Compute c( := c,/q*p; 
(5) Modify T :=T+ap; 
(6) Modify r := r - ctq; 
(7) ModifyT:=(T+/?T)/(l+P); 
(8) Modify p:=(r+jIp)/(l+B); 
(9) Return to step (1). 
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As discussed in [25], this algorithm (coded there as GMCG) is more reliable 
than the biconjugate gradient method (which is a method specially designed for 
solving non-Hermitian matrix equations) and it also has the advantage over 
Algorithm 1 in that the condition number of the original system is not squared. The 
above introduced Algorithms 1 and 2 will be illustrated in Section 6. 

5. EIGENVALUE REDISTRIBUTION BY PRECONDITIONING 

As our prime purpose is to study the solution of Eq. (18) by the CGMs, we shall 
now show how the convergence may be increased by preconditioning. From the last 
section, we know that the convergence of a CGM is fast if either the underlying 
condition number of the coefftcient matrix is small or the eigenvalues of the 
coefficient matrix cluster together. 

In the literature, many existing preconditioners are designed for improving alone 
the conditioning of a sparse matrix (see [15, Chap. 10; 20, 291 and the references 
therein). In [Z], we note that the CGMs can be very efficient without precondi- 
tioning when the eigenvalues of a linear system approximate some fixed clustering 
pattern. There such a pattern is ensured by the presence of compact integral 
operators. Here for solving a class of non-compact integral operator equations, we 
propose to precondition the discrete linear systems so as to find a fixed clustering 
pattern and hence speed up the convergence of the CGMs. 

Recall that the discrete operator equation (13) originating from Eq. (7) yields the 
linear system Eq. (18). The presence of non-compact X causes the asymptotic 
irregularity in clustering patterns of eigenvalues of matrices A,%. Now let us 
separate a compact operator X1 from X by the splitting 

x=3$+Lq;, (26) 
where 

1 J 6 K 
(,x,u)(s) 0 0 ; u(t)$ O<S<6 

= 

0, 6<s61, 
(27) 

with 6 = (io/no)” > 0 for integers i,, no > 1 (to be specified). Suppose that N* is the 
largest order of linear systems one particular computer can handle. Then we choose 

N* n*=- and * noan, (28) r 

where r is the order of a chosen quadrature rule (see Section 3). In view of Eq. (27), 
we set up the mesh on [0, 11, 

z7,*:O=~,<~,< .‘. <rfllp,=qr,< “’ <qn=l 
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with vi = (j/n)4 for j = 1, . . . . n, where 

i,=INT %r +l [’ 1 and 
n0 

9i~-Id6<rlil. 

Hence, a piecewise polynomial space S:;’ may be defined based on the mesh IZ, (as 
in Section 3). On substituting Eq. (26) into Eq. (7) and then applying the colloca- 
tion method, we obtain a discrete operator equation (similar to Eq. (13)) 

Further collocating Eq. (29) at nodes {s,};y” yields a linear system, equivalent to 
Eq. (181, 

(1, -KS,, - K,,, - Lz) u, = g> (30) 

where Z,, - K,,, - K,,, -L, = A,,. Now let us denote 

D,=In-Ks,,,, C, = K,,, + L,. 

Then Eq. (30) may be written as 

(D, - C,) u, = g. (31) 

In order to solve Eq. (18), i.e., Eq. (31) by the CGMs, we propose to use D;’ as 
a preconditioner and transform Eq. (3 1) into 

&I, = g, (32) 

where A”, = I,, - D;‘C, and &j = D; lg. It can be shown that the eigenvalues of 2,‘s 
approximate a fixed clustering pattern asymptotically. This is because 2, may be 
viewed as the collocation matrix corresponding to the discrete operator 

which approximates the operator 9 - (9 - ,X,)-l (Xi + 6p) with (9 -,X,)-l 
(Xi + 3) compact for 6 > 0. 

Note that in Eq. (31), D, is a N, x N, matrix of sparse structure 

where di, is an i, x il full matrix and I,_ il is the (N, - il) x (N, - i,) unit matrix. 
Therefore the complexity of computing 0;’ is O(i:), increasing as i, becomes 
larger. The choice of i, depends on that of i,, i.e., 6. We may use i, for line tuning 

581/97/l-10 
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Eq. (32). With the extreme choice of i, = 1, the matrix D, is a diagonal matrix, 
satisfying (i, j= 1, . . . . N,) 

(D& = 0 if i#j and (D,Li = 1 if i> 1, 

the inverse of which is given by 

1 
(D,‘),, = (D,),,’ (DA; = 1 if i> 1 and (D,;‘),=O if i# j. 

6. NUMERICAL EXPERIMENTS 

In this section, we shall experiment on the CGMs of Section 4 and show how the 
preconditioning in Eq. (32) of Section 5 improves the performance of the CGMs. 
Following Eq. (6), we choose our test problem to be the boundary integral 
equation 

e H\“(h)} cr(s’) ds’ = g(s), o<s< 1, (33) 

with c1= n/10, k= 5.0, ye = 23, r = s’* +s* - 2s’~ cos ~1, and g(s) is found 
accurately so the solution is a(s) = ~“*e*~~ = s”*. 

We shall solve Eq. (33) using the product integration collocation method 
(Section 3) with piecewise constant and piecewise linear basis functions. Suppose 
that the interval [0, l] is subdivided into 12 small intervals with 0 = 
40<?1< ... < n,, _ I < ye,, = 1 as in (10) with the graded meshes in (17). Then in the 
case of piecewise constants (r = l), we collocate at the midpoints of each interval, 
while in the case of piecewise linears (r = 2) we collocate at the two Gaussian points 
on each of the last (n-i) intervals. The computing error with n is defined by 

4, = lb,, - 41 = max{ Il~iYs,) - 4.q)ll) 

TABLE I 

Algorithm 1 for Piecewise Constant Approximations (r = 1) 

No preconditioning With preconditioning 

Y Size N Steps CPU q Size N Steps CPU 

1 36 7 0.3 1 36 5 0.3 
108 6 2.1 108 5 1.9 
324 6 18.7 324 5 16.3 

4 36 21 0.9 4 36 16 0.8 
108 34 11.9 108 19 7.1 
324 46 143.6 324 20 65.8 
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TABLE II 

Algorithm 2 for Piecewise Constant Approximations (r = 1) 

No preconditioning With preconditioning 

4 Size N Steps CPU q Size N Steps CPU 

I 36 12 0.5 1 36 9 0.4 
108 13 4.5 108 9 3.0 
324 13 38.7 324 9 26.0 

4 36 49 2.2 4 36 33 1.5 
108 77 27.0 108 37 12.4 
324 97 288.4 324 41 119.0 

over all collocation points (s,) p, where af represents the product integration 
solution (refer to (14)) and N, = (n - i)r + i. Then the expected order for the error 
E, is O(K’/~) with q= 1 for both approximations, O(np2) with q=4 for the 
piecewise constants, and O(nm4) with q = 8 for the piecewise linears. 

The number of iterations required to achieve a specified tolerance is denoted by 
“Steps” and the corresponding cpu seconds used by Prime-750 by “CPU.” A direct 
solver requires CPU = 0.2, 5.0, and 130.0 respectively for solving the 36 x 36, 
108 x 108, and 324 x 324 linear systems. To solve linear systems iteratively up to an 
accuracy comparable to the level of the discretization error, we choose the tolerance 
TOL as follows: (a) with q = 1 for both approximations, TOL = 10m2 for any 
N, 6 324; (b) with q = 4 for the piecewise constants, TOL = lop3 for N, = 36, 
TOL=10d4 for N,=lOS, and TOL=lO-’ for N,=324; (c) with q=8, 
TOL = 10e4 for N, = 36, TOL = lop5 for N, = 108, and TOL = lop6 for N, = 324. 

In Tables I-IV, we present our numerical results from solving the Eq. (33) using 
Algorithms 1 and 2 as introduced in Section 4. Throughout the tables we choose 
i-0 in using the unpreconditioned CGMs. Here with the PRIME-750, we choose 

TABLE III 

Algorithm 1 for Piecewise Linear Approximations (r = 2) 

No preconditioning With preconditioning 

9 Size N Steps CPU 9 Size N Steps CPU 

1 36 6 0.3 1 36 5 0.1 
108 6 2.2 108 5 1.0 
324 6 19.5 324 5 8.8 

8 36 36 1.6 8 36 19 0.5 
108 58 21.0 108 22 4.4 
324 91 295.1 324 23 40.1 
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TABLE IV 

Algorithm 2 for Piecewise Linear Approximations (r = 2) 

No preconditioning With preconditioning 

4 Size N Steps CPU q Size N Steps CPU 

1 36 13 0.5 1 36 9 0.3 
108 13 4.3 108 9 1.8 
324 13 37.4 324 9 15.2 

8 36 15 3.1 8 36 39 1.1 
108 123 40.6 108 43 8.6 
324 181 519.6 324 46 11.4 

N* = 400. For Tables I-II, we set i, = 100, n, = 400 (corresponding to 6 = 0.254) in 
using the preconditioned CGMs. While for Tables III-IV, we take i,= 200, 
n, =400 (corresponding to 6 =0.5y) in using the preconditioned CGMs. Refer to 
(27) and (28). 

These tables clearly demonstrate that the preconditioning as discussed in 
Section 5 speeds up the convergence of the CGMs and that Algorithm 1 using the 
normal equation is quite efficient. In other experiments on the choice of 6, we note 
that increasing 6 results in faster convergence of the preconditioned CGMs and that 
the overall efficiency may not improve if 6 is too large (due to the increased work 
in computing the inverse matrix D;'). The appropriate choice of 6 is the subject 
of further investigations. 

7. CONCLUSIONS 

In this paper we have investigated the problem of the numerical solution of the 
boundary integral equation, from reformulation of the Helmholtz equation, by the 
conjugate gradient methods (CGMs). When the integral boundary is only piecewise 
smooth, the integral operator is non-compact and the solution is non-smooth. The 
non-compactness of the integral operator hinders the fast convergence of the CGMs 
for the solution of discrete linear systems. Such a linear system has a full and com- 
plex non-Hermitian matrix coefficient. For a piecewise smooth boundary with one 
typical corner, we have developed an efficient preconditioner which improves the 
clustering pattern of eigenvalues of the discrete linear system and hence established 
the fast convergence of the CGMs. Numerical experiments are carried out for a 
model problem using two general algorithms. It appears that the algorithm using 
the normal equation with our preconditioning is particularly efficient. 
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